Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.

نویسندگان

  • Taotao Liu
  • Xicheng Wang
چکیده

Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. Dimeric arginine kinase (dAK) is unique in some marine invertebrates. The effects of Zn²(+) on the unfolding and aggregation of dAK from the sea cucumber Stichopus japonicus were investigated. Our results indicated that Zn²(+) caused dAK inactivation accompanied by conformational unfolding, the exposure of hydrophobic surface, and aggregation. Kinetic studies showed the inactivation and unfolding of dAK followed biphasic kinetic courses. Zn²(+) can affect unfolding and refolding of dAK by trapping the reversible intermediate. Our study provides important information regarding the effect of Zn²(+) on metabolic enzymes in marine invertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Folding of the yeast prion protein Ure2: kinetic evidence for folding and unfolding intermediates.

The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2...

متن کامل

Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.

Chemical denaturant sensitivity of the dimeric main protease from severe acute respiratory syndrome (SARS) coronavirus to guanidinium chloride was examined in terms of fluorescence spectroscopy, circular dichroism, analytical ultracentrifuge, and enzyme activity change. The dimeric enzyme dissociated at guanidinium chloride concentration of <0.4 M, at which the enzymatic activity loss showed cl...

متن کامل

Chemical and Thermal Unfolding of a Global Staphylococcal Virulence Regulator with a Flexible C-Terminal End

SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a rec...

متن کامل

GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase.

The prokaryotic molecular chaperone GroE is increasingly expressed under heat shock conditions. GroE protects cells by preventing the irreversible aggregation of thermally unfolding proteins. Here, the interaction of GroE with thermally unfolding citrate synthase (CS) was dissected into several steps that occur before irreversible aggregation, and the conformational states of the unfolding prot...

متن کامل

Involvement of cysteine residues and domain interactions in the reversible unfolding of lipoxygenase-1.

Urea-induced unfolding of lipoxygenase-1 (LOX1) at pH 7.0 was followed by enzyme activity, spectroscopic measurements, and limited proteolysis experiments. Complete unfolding of LOX1 in 9 M urea in the presence of thiol reducing or thiol modifying reagents was observed. The aggregation and oxidative reactions prevented the reversible unfolding of the molecule. The loss of enzyme activity was mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 42 11  شماره 

صفحات  -

تاریخ انتشار 2010